
A new
model

for Fluidics Tronsmission Lines
Tronsmission l ines in f lu idic systems con be required to hondle pneumotic
signols with frequency components to os high os 1,000 cps. The simpl i f ied
l ine model used in pneumotic process control  is grossly inoccurqte ot such
high frequencies. The quthor presents on occurote model,  together with
nomogrophs for speedy determinot ion of goin-vs.- frequency curves.

J. T. KARAM JR., United Stotes Air Force*

The introduction of fluidic devices into the control
system designer's tool kit created a problem at the
system level. While the characteristics of the fluidic
devices themselves were known fairly well, virtually
nothing was known of the characteristics of the
pneumatic transmission lines used to connect them.
Fluidic control systems were designed empirically and
the final design, arrived at by trial-and-error, was sel-
dom the optimum one. The need for a simple and suf-
ficiently accurate model of pneumatic transmission
lines as used in fluidic control systems is clear.

Process conlrol model works
of  low f requencies .  .  .

In fluidic applications, the designer must consider a
variety of conditions: transmitted signal frequencies
range from less than 1 cps to more than 1,000 cps;
line lengths range from inches to about 20 ft; mean
pressures range from atmospheric to more than 50
psig; and the size of the pressure signal is often an ap-
preciable fraction of the mean pressure.

Early studies of pneumatic transmission lines con-
centrated in two areas-conventional pneumatic pro-
cess control systems and organ pipes or sound tubes.
The former concerns very long lines (greater than 50
ft) transmitting low frequency (less than 10 cps) sig-
nals. The latter concerns very small signals of very
high frequency (greater than 200 cps). Thus, both
areas of investigation cover only a limited range of
the problems that can arise in fluidic system applica-
tions. Other theoretical analyses have been proposed
(Ref. 1 and2), but are not generally used by practic-
ing engineers because of real or imagined mathenrati-
cal comolexitv.
* Lt. Karam is with the Air Force Plant Representative
Office a Lockheed Missiles & Space Co., Sunnyvale, Calif.
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Probably the most desirable model of a pneumatic
line is its electrical analog (see Box). The model
most commonly used for process control work is
based on this analog (Ref. 3 ), and it predicts that the
transmission line parameters are independent of fre-
quency. The line parameters-resistance R, induc-
tance L, conductance G, and capacitance C-are ex-
pressed in units per in. of line, since they are distrib-
uted parameters. The process control model expresses
these oarameters as

8ru
R : _ ; G : O

(1)

t : o A  ' : o o

where p is the fluid viscosity (psi-sec), I the line
cross-sectional arca (in.'), p the fluid density (lb-
secz/in.a),7 the ratio of specific heats (dimension-
less), and P the mean line pressure (psi). The fluid
characteristics F, p, and y are functions of tem-
perature and pressure, but for a given set of operating
conditions the line parameters are constants. This
analysis assumes that the line does not leak.

. . . but not for high frequencies

More thorough studies of pneumatic transmission line
dynamics took into account thermal as well as viscous
boundary layer effects (Ref. 1 and 2), and demon-
strated that the line really has two distinct transmis-
sion regimes. At low frequencies, the line parameters
are independent of frequency, as described above. At
high frequencies, the line parameters are functions of
frequency. A characteristic frequency f,, serves as a
demarcation line between the two regimes. This char-
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FlG. l .  The exper imenta l ly  determined t rans-
mission l ine gain cufve for two differenf signal
levels  fa l ls  accuraie ly  wi th in the gain envelopes
(colored l ines) predicfed by the high-frequency
model  of  Equat ions 2.  Note the minor  shi f ts  in
fhe gain curve caused by a change of  s ignal  level
from 0.2 percent (circles) fo 20 percent
(sguares) .  Note a lso that  the agreement  between
the test  data and the calcula led gain envelopes
sfarts io deferiorate at a frequency of about
400 cps,  or  l5  l imes fhe fundamenfal  f requency.

than the characteristic frequency l, (Ref. 4).
The dimensionless Prandtl number o is defined as

where the heat capacity at constant pressure cp, the
absolute viscosity p, &nd the thermal conductivity k
are all expressed in consistent units.

The unit inductance and capacitance in this high-
frequency model are the same as in the constant-resis-
tance model used for process control. But note that
here a conductance exists without physical leakage,
and both the unit resistance and conductance are
functions of the signal frequency l.

acteristic freqeuncy is defined by the expression

f^. : 4v
A

where the kinematic viscosity v : tr/ p, and is ex-
pressed in in.2 per sec.

Nichols' equations defining the line parameters in
the high frequency regime may be greatly simplified
to the following expressions

o cPlt

R : rL \/ff,

D
L : "

A

provided that the signal

(^v - l)
G : - "c\/ff,

A

- t P

(2)

frequency I is much greater

THE ELECTRIC.PNEUMATIC ANALOGY
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A pneumatic transmission line, like an
electric transmission line, is a distributed
parameter system, and the well-known
electrical model also provides a model for
this line. Both systems may be repre-
sented by similar dif ferential equations
and. based on this model, the weil-devel-
oped theory of electrical transmission
may be applied directly to pneumatic
lines.

In the pneumatic model, pressure p is
analogous to voltage V, and volumetric

Zdx
r+dI

Ydx

- t --T-

I

I
- - - - - L - + -

flow rate Q is analogous to current 1. The
steady state resistance of the line is the
amount of driving force or potential re-
quired per unit of flow-V / I or P / Q. Ex-
pressing P in psi and Q in cu in. per sec
or cis, the pneumatic units of resistance
are psi/cis.

But the pneumatic line, like the electric
line, has transient effects. The line has ca-
pacitance because pressure changes
throughout its length cause air to flow.
And it has inductance because anv flow

of air tends to change the pressure distrib-
ution. The dynamic model of each line
section, see figure, consists of a series im-
pedance Z (psi/cis) and a shunt admit-
tance Y (cis/psi). Resistance R is the real
part of Z, and indtctance L is 1/o times
the imaginary part. Conductance G is the
real part of Y and capacitance C is 1,/u
times the imaginary part.

Physically, the line resistance is due to
viscous effeots; inductance results from
the fluid's inertia; capacitance represents
the energy-storing ability of the fluid;
and conductance is due to thermal effects
or actual flow leakage.

The units of pneumatic inductance and
capacitance are, by analogy with the elec-
trical equivalent:

,  f V  I  P  p s i - s e c
" 

:  
Ldtlr t t) :  delar 

- 
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l -  I 1  O  r r ' s - s e c'  : 
LTvrat): ielat pr

Because the line is a distributed net-
work, all line parameters in the text equa-
tions are expressed in unit terms-per in.
of line. For example, unit inductance is
expressed as psi-sec/cis-in.

v +

I
l
I

dV
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gain are plotted on the gain envelopes and connected
with smooth curves. The gain maxima and minima
occur at those frequencies where the line is resonant.
For the two models discussed in this article (Equa-
tions 1 and2), the resonant frequencies are given by

r ; :  # (5)
where the adiabatic sonic velocity a : (yP/p)r/r, is
expressed in in. per sec, and n takes on successive in-
teger values. For a blocked line, the gain is maximum
for  odd resonant  f requencies (n :  1 ,3,  5 .  . . )  and
minimum for even resonant frequencies (n - 2,4, 6,
. . . ). The resonant frequencies determined from
Equation 5 are plotted along the previously deter-
mined gain envelopes to locate the points of inflection
on the gain curve for the given transmission line.

A series of experiments was run on blocked l/q-in.
OD pneumatic transmission lines to evaluate the ac-
curacy of the high-frequency model. A blocked line
was chosen in these tests as a starting point for later
more realistic studies. The blocked line represents the
simplest form of the transmission l ine problem, and
allows verification of the high-frequency model pre-
sented here and the gain envelope technique, without
involving the more difficult problem of modeling the
termination.

In the tests, gain values at controlled frequencies
were determined from measurements of sisnal ores-
sures at the source P" and at the receivei P,.. The
gain curves determined by test fitted nicely within the
gain envelopes predicted by the high-frequency model
(Equations 2). Figure 1 shows this fit at two different
signal levels. Signal level S is expressed as the ratio of
the ac component of pressure (variation around p) to
the dc or average pressure P. Even at the high signal
level of 20 percent, gain envelopes based on the high-

The goin envelope mefhod
The dynamic characteristics of a pneumatic transmis-
sion line are commonly presented as frequency re-
sponse curves showing amplitude and phase shift as a
function of frequency. However, in the high-fre-
quency regime, characterized by

RG << 4rfLC
transmission line losses are low, and all low-loss lines
have almost identical gain curves. The gain curves for
such lines differ only in the magnitude of their max-
ima and minima and in the frequencies at which these
singularities occur. This fact permits a simple yet ac-
curate dynamic analysis for high frequencies, by
means of gain envelopes.

The gain envelopes are simply the loci of the max-
ima and minima on the amplitude frequency response
curve. For lines having a blocked termination, the
gain envelopes are defined by (Ref. 4)

Gain^"" :  (s inh aD)-1

Gain^i" :  (cosh aD)-r  
(3)

where a is the unit attenuation (neper per in.) and
D is the total line length (in.). The unit altenuation is
itself a function of frequency. For high-frequency,
low-loss lines it is given by

":'##:t"=.'lJH
For a given low-loss line, this reduces to a direct pro-
portionality between a and the square root of fre-
quency.

The gain envelopes for a given transmission line
can be plotted from Equations 2, 3, and 4, evaluated
at a number of frequencies arbitrarily selected to
cover the range of interest. Then, to obtain the gain
curve itself, the points of maximum and minimum
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(4)

D = 9 0 i n .
P= rcps i s
S - O.2'/"
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FtG. 3. RESONANT FREQUENCY NOMOGRAPH

frequency model fit the experimental results.
Further results for different line lengths, Figure 2,

also show close agreement between the high-fre-
quency model and the test data. Resonant frequencies
calculated by the exact method of Nichols (Ref. 2)
are also plotted on Figure 2, as well as values based
on the constant-resistance model (Equations 1). Ni-
chols' exact solution agrees well with the test data and
the high-frequency model, but the constant-resistance
model fails completely at these high frequencies.

In all29 tests, the high frequency model predicted
resonant gains within 2 db of the experimental values,
and predicted the resonant frequencies within 10 per-
cent. Usually, the agreement was much better than
these limits.

Which model to use

Based on the results shown in Figures 1 and 2, the
high-frequency model (Equations 2) should be used
whenever the signal frequency is greater than the
characteristic frequency of the line by a factor of 5 or
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more. For lA-in. OD lines, the characteristic fro-
quency is on the order of 1 cps, so the high-frequency
model applies to practically the entire range of sig-
nals encountered in fluidics (1 to 1,000 cps). It does
not apply at the lower signal frequencies when the
lines are very small (Ve-in. OD or less) or when the
lines are long (20 ft or more). In these cases, or
whenever an exact solution is required, Nichols'
method should be used. The only disadvantage of
Nichols' method is its increased complexity and the
resulting time consumption and lack of manipulative
ease.

While the constant-resistance model (Equations 1)
has been used successfully in the study of process
control transmission lines, it should never be used
when the signal frequencies are greater than the char-
acteristic frequency of the line.

When using the gain envelope method with any
model, the higher resonant frequencies (for n I 15 )
will be in large error. This is so because any error in
the fundamental frequency (n - 1) is also multiplied
by n. However, at these higher frequencies there is
usually very little difference between the maximum
and minimum gains, and the converging gain envel-
opes may be considered as limiting or bracketing val-
ues of  the actual  gain.

The goin envelope nomogroph

The main advantage of the high-frequency model and
the gain envelope technique is their ease of applica-
tion. For a given line, the describing parameters are
simply constants or constants times the square root of
the signal frequency. The simplicity of the equations
defining these parameters makes nomographic solu-
tions possible. Nomographs for the resonant frequen-
cies and the attenuation of cylindrical, pneumatic
transmission lines, Figures 3 and 4, can be used to de-
termine the gain curve of practically any pneumatic
line having a blocked termination. The nomographs
are based on air at 80 deg F (o' - 0.704, | 

- 1.4),
but are valid within a few db for ambient tempera-
tures from 30 deg F to 130 deg F. The step-by-step
procedure is as follows:
1. Determine the length D of the transmission line in

in., its diameter d in in., the mean pressure P in
psia, and the range of signal frequencies I in cps.

2. On Figure 3, connect D and ln u* to determine
n,,,o,. If /?-o* ( 1, resonance does not occur and
the line may be represented by a single equivalent
circuit (one section ladder network). If n.u*
> 1, proceed to the next step.

3. On Figure 4, connect d and P to determine 1,. If

f , ) f^uu use a low frequency method (constant
resistance model) for signal frequencies lower
than l, and proceed to the next step for frequen-
cies higher than fo. If l*in ) fu, proceed to the
next step.

4. On Figure 4, connect f, and I to determine a for
several arbitrary values of I selected to cover the
range of interest.
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FIG. 4. ATTENUATION NOMOGRAPH

On Figure 4, connect D and the values of a ob-
tained in Step 4 to determine aD for the selected
frequencies.
Using a hyperbolic function table, determine the
maximum and minimum gains at the selected fre-
quencies from Equations 3. Convert the gains to
decibels ldb - 20 logls (Gain)].
Plot the gains in db versus the corresponding fre-
quency on semilog paper. Connect the maximum
gain points to each other and the minimum gain
points to each other, thereby forming the gain en-
velopes.
On Figure 3, connect D and n to determine the
resonant frequencies f"for all integral values of n
from 1 to 1 5. For odd values of n, plot the corre-
sponding l, on the maximum gain curve. For
even values of n, plot the corresponding l" on the
mlnlmum galn curve.

9. Connect the plotted resonance points together,
thereby forming the gain curve.
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